

Figure 1. B as a function of the number of carbon atoms.

Figure 2. $\lambda_{0.6}$ as a function of the number of carbon atoms.

mental uncertainty. Tables I and II give the percentage deviation of eq 2 from the new experimental data presented in this paper.

The trialkylamines are not represented by eq 2 since they are tertiary amines and as such are polar but nonassociated. This means that they should be represented by eq 1a. Figures 1 and 2 show how the terms *B* and $\lambda_{0.6}$ compare with those from other

series of nonassociated liquids and Table III gives the individual percentage deviation of each measurement from that predicted by eq 1a.

Detailed tabulations using eq 1a and 2 have been prepared by the authors under the sponsorship of ESDU and may be found in ref 4 and 5 for 30 alcohols, 20 primary alkylamines, 5 secondary alkylamines, and 5 tertiary alkylamines. The necessary critical temperature data were taken from ref 6 and 7.

Conclusion

Experimental thermal conductivity data are presented for series of alcohols and primary and secondary amines. All of these fluids associate by the formation of hydrogen bonds. Experimental values are also presented for a series of tertiary amines which, while polar, do not form hydrogen bonds and so are classed as nonassociating.

An equation developed previously (1) to correlate the thermal conductivity of nonassociated liquids has been modified, and an alternative form is presented which correlates the thermal conductivity data for these associated liquids.

Acknowledgment

This paper is published by permission of the Director, National Engineering Laboratory, Department of Industry. It is British Crown copyright.

Literature Cited

- Jamieson, D. T. J. Chem. Eng. Data 1979, 24, 244-246. Irving, J. B.; Jamieson, D. T. Natl. Eng. Lab. (U.K.), Rep. 1976, No.
- (2) 609 (3)
- Jamieson, D. T.; Irving, J. B.; Tudhope, J. S. "Liquid Thermal Conduc-tivity: a Data Survey to 1973"; HMSO: Edinburgh, 1975. Eng. Sci. Data Item 1975, No. 75024. (4)
- (5) Eng. Sci. Data Item 1978, No. 78022
 (6) Eng. Sci. Data Item 1974, No. 74023
- (7) Eng. Sci. Data Item 1976, No. 76025.

Received for review October 1, 1979. Accepted March 10, 1980. This work was supported by the Chemical and Minerals Requirements Board of the Department of Industry.

Viscosity and Density of Aqueous Na₂CO₃ and K₂CO₃ Solutions in the Temperature Range 20–90 °C and the Pressure Range 0-30 MPa

Robert J. Correla and Joseph Kestin*

Division of Engineering, Brown University, Providence, Rhode Island 02912

H. Ezzat Khalifa

United Technologies Research Center, East Hartford, Connecticut 06108

The paper presents new experimental measurements of the viscosity of aqueous Na₂CO₃ and K₂CO₃ solutions in the temperature range 20-90 °C and the pressure range 0-30 MPa. The measurements cover the concentration range 0-1.7 m for the first salt and 0-2.5 m for the second and are believed to be accurate to $\pm 1\%$. The effect of pressure on the density of these solutions has also been measured. The paper contains correlations of the density and viscosity of Na₂CO₃ and K₂CO₃ in terms of temperature, pressure, and concentration. The correlations reproduce the experimental results to within their quoted accuracy.

1. Introduction

In a number of earlier publications (2, 3, 6) we reported the viscosity of the aqueous solutions of NaCl and KCl and their mixtures over the temperature range extending to 150 °C, pressure range extending to 30 MPa, and composition range extending from zero to near saturation. These measurements are believed to be the only ones covering ranges of pressure, temperature, and concentration which correspond to those prevalent in liquid-dominated geothermal reservoirs. The present paper is the sixth in a series (2, 3, 6-8) that is intended to provide data on the viscosity of the most important constituents of geothermal fluids and, together with the other papers in this

Figure 1. Calibration curve and checkpoints for the viscometer: Θ , original calibration points; \bullet , check points.

series, to complement the continuing effort of the United States Geological Survey toward the establishment of a data base for the equilibrium and transport properties of a selected number of aqueous salt solutions.

In this paper we present measurements of the viscosity of aqueous solutions of Na_2CO_3 and K_2CO_3 in the temperature range 20–90 °C and the pressure range 0–30 MPa. The concentration range extends from 0 to 1.7 *m* for the first solution and from 0 to 2.5 *m* for the second. The present measurements constitute the first effort to cover a wide range of pressures, temperatures, and concentrations simultaneously. It is worth mentioning that, with the exception of a few isolated measurements at low temperature and atmospheric pressure, no data could be located on the viscosity of Na_2CO_3 and K_2CO_3 solutions.

2. Experimental Technique

The measurements were carried out in an oscillating-disk viscometer which was described in detail in our previous publications (5, 8, 10). The characteristics of the oscillating system are essentially the same as those given in ref 2. The edgecorrection factor (9, 12) for the viscometer was obtained by calibrating the viscometer using distilled water as a reference fluid. Figure 1 depicts the results of the calibration. The solid line represents a least-squares fit of the experimental data

$$C = 1.000 + 0.04085\delta + 0.09365\delta^2 - 0.03767\delta^3 \quad (1)$$

in which δ is the boundary-layer thickness (8, 11) defined by

$$\delta = (\nu T_0 / 2\pi)^{1/2} \tag{2}$$

Here ν is the kinematic viscosity of the fluid and T_0 is the period of oscillation under vacuum. The solid points are check-measurements which were taken during the course of this investigation after each cleaning and realignment. Neither the original calibration points nor the checkpoints deviate from the line represented by eq 1 by more than 0.2%.

The solutions were prepared by mixing reagent quality salts with triple-distilled, deaerated water. The hygroscopic nature of Na₂CO₃ and K₂CO₃ precluded the determination of the concentration by the gravimetric method as we did with NaCl and KCl. Instead, the concentration of the solutions was determined by titration. It is believed that the values of the concentration thus determined are accurate to within 0.001 *m*, which is adequate for our purposes.

3. Density

Because of the strong link that exists between the viscosity and density in the working equations of the oscillating-disk vis-

Figure 2. The pressurizing system for the viscometer.

cometer (9, 12), it is imperative to have reasonably accurate density data over the desired pressure-temperature-concentration range. Unfortunately, accurate values of the density of Na_2CO_3 and K_2CO_3 solutions are not available over the pressure-temperature-concentration range of interest in the present work (13). More specifically, an extensive search of available literature has failed to uncover any data on the density of these solutions at high pressure, even though limited data on the low-pressure density could be found in the extensive compilation of Brown et al. (1). Faced with this situation we developed a technique by which the viscometer vessel was used for the determination of the relative effect of pressure on the density of a given solution. An account of the method employed for determining this effect is given later.

The experimental setup is shown in Figure 2. At a given temperature T the viscometer is pressurized from ambient pressure P_0 to a higher pressure $P(\sim 30 \text{ MPa})$. At thermal equilibrium, the pressure is reduced slowly to P_0 while collecting the overflow fliud in the graduated buret which is maintained at the ambient conditions P_0 and T_0 . The mass of the liquid released is given by

$$\Delta m = \rho(P_0, T_0)(\Delta V) = V(T)[\rho(P, T) - \rho(P_0, T)]$$
(3)

Here ΔV is the volume of liquid collected in the graduated buret and V(T) is the volume of the viscometer at temperature T. If the same experiment were carried out with pure water, w, we would obtain

$$\Delta m / \Delta m_{\rm w} = \rho(P_0, T_0) (\Delta V) / \rho_{\rm w}(P_0, T_0) (\Delta V_{\rm w}) = [\rho(P, T) - \rho(P_0, T)] / [\rho_{\rm w}(P, T) - \rho_{\rm w}(P_0, T)]$$
(4)

Solving for $\rho(P,T)/\rho(P_0,T)$, we get

$$\rho(P,T)/\rho(P_0,T) = 1 + \phi_w(P,T)\rho(P_0,T_0)(\Delta V)/\rho(P_0,T)(\Delta V_w)$$
(5)

in which

$$\phi_{w}(P,T) = \left[\rho_{w}(P,T) - \rho_{w}(P_{0},T)\right] / \rho_{w}(P_{0},T)$$
(6)

is an accurately known function for pure water; it can be determined, for example, from the accurate correlation of Kell (4). If measurements on pure water were performed at a different temperature T', then

$$\rho(P,T)/\rho(P_0,T) = 1 + \rho(P_0,T_0)\phi_w(P,T')(\Delta V)\eta/\rho(P_0,T)(\Delta V_w')$$
(7)

in which

$$\eta = \left[1 + \alpha (T' - T_0)\right] / \left[1 + \alpha (T - T_0)\right]$$
(8)

is a factor to account for the volumetric thermal expansion of the viscometer vessel whose apparent volumetric thermal expansion coefficient is denoted by α . It can be shown that for stainless steel the factor η accounts for only 0.03% of the density change in the temperature range 20–100 °C and can,

Figure 3. Comparison between the measured effect of pressure on the density of water and that of Kell.

Table I. The Coefficients d_{ij} in Equation 11 for Na₂CO₃ Solutions

			j	
i	0	1	2	3
0	0.99270	0.38432×10^{-3}	-0.13199×10^{-4}	0.53862×10^{-7}
1	0.03280	-0.11218×10^{-2}	0.20085×10^{-4}	-0.96466×10^{-7}
2	0.07910	0.45883×10^{-3}	-0.10235×10^{-4}	0.52868×10^{-7}

Table II. The Coefficients a_{ij} in Equation 14 for Na₂CO₃ Solutions

		/	
i	0	1	2
0	0.4259	0.07290	-0.06281
1	-0.1266×10^{-3}	-0.3767×10^{-2}	0.1809×10^{-2}
2	$-0.2500 imes 10^{-5}$	$0.4225 imes 10^{-4}$	-0.2017×10^{-4}

therefore, be neglected in the present application. Finally, eq 7 can be modified to reflect the relationship between the density of an arbitrary fluid at high pressure, given its density at low pressure (but the same temperature T), and the density of water at ambient temperature T_0 and two pressures P' and P_0 , viz.

$$\rho(P,T) = \rho(P_0,T) + \rho(P_0,T_0)\phi_w(P',T_0)(\Delta V)/(\Delta V_w')$$
(9)

Figure 3 contains a comparison between the measured effect of pressure on the density of water and that calculated from the correlation of Kell (4) over the temperature range 20-90 °C. It can be seen that our experimental procedure results in an error of no more than 0.02%.

The pressure effect was determined in the manner described above and applied to the low-pressure data compiled by Brown et al. (1) as a linear factor:

$$\rho(P, T, c) = \rho^{0}(T, c) [1 + \alpha(T, c) P / MPa]$$
(10)

Here $\rho^{0}(T,c)$ is a hypothetical zero-pressure density represented by

$$\rho^{0}(T,c) = \sum_{j=0}^{2} \sum_{j=0}^{3} d_{ij} (c/m)^{\nu_{2}} (T/^{\circ}C)^{j}$$
(11)

for Na₂CO₃ solutions, and

$$\rho^{0}(T,c) = \frac{10^{3}\rho_{w}(T) + M_{2}c\rho_{w}(T)}{10^{3} + \phi_{v}c\rho_{w}(T)}$$
(12)

for K_2CO_3 solutions. Here m = 1 mol/kg, M_2 is the formula weight of K_2CO_3 , and

$$\phi_{\rm v}(T,c) = \sum_{j=0}^{2} \sum_{j=0}^{2} d_{ij} (c/m)^{\nu_2} (T/{}^{\rm o}{\rm C})^j$$
(13)

The pressure coefficient $\alpha(T,c)$ in both cases is expressed in terms of T and c as

$$\alpha = \sum_{j=0}^{2} \sum_{j=0}^{2} a_{ij} (c/m)^{j} (T/^{\circ}C)^{j}$$
(14)

Tables I and II contain the coefficients d_{ij} and a_{ij} for Na₂CO₃ and Tables III and IV the coefficients for K₂CO₃, respectively. The correlations represented by eq 10–14 describe the density

Table III. The Coefficients d_{ij} in Equation 13 for K_2CO_3 Solutions

		j				
i	0	1	2			
0	-0.81670	0.43265	-0.33343×10^{-2}			
1	21.889	-0.26285	$0.18678 imes 10^{-2}$			
2	-2.4998	0.46176	-0.30161×10^{-3}			

Table IV. The Coefficients a_{ij} in Equation 14 for K_2CO_3 Solutions

		j	
i	0	1	2
0	0.4847	-0.07534	0.2366×10^{-2}
1	-0.1857×10^{-2}	-0.1634×10^{-2}	0.1009×10^{-2}
2	0.1371×10^{-4}	$0.2133 imes 10^{-4}$	-0.1168×10^{-4}

Table V. Viscosity of Na₂CO₃ Solution No. 1 (c = 0.280 m)

<i>P</i> , MPa	$\mu, \mu Pa s$	<i>P</i> , MPa	μ, μPa s	
at 20	at 20.5 °C		5.5 °C	
0.1	1145	0.1	825	
7.2	1143	7.3	824	
14.0	1142	14.2	825	
21.2	1143	20.9	826	
31.2	1141	31.3	828	
0.1	1145	0.1	825	
at 53	3.5 °C	at 69	9.5 °C	
0.7	597	1.0	470	
7.1	601	7.7	472	
14.1	601	13.9	474	
21.0	606	2 0.6	477	
31.3	606	31.2	478	
0.9	597	1.0	469	
at 87	7.0 °C			
0.6	376			
7.3	376			
13.9	379			
20.7	381			
34.1	384			
1.1	376			

of the solutions to within the uncertainty of the compiled data of Brown et al. (1), that is, $\pm 0.1\%$.

The density of the solutions at room temperature and atmospheric pressure was measured in a precision pycnometer both before and after each experimental run. These measurements agree with the correlations represented by eq 11–13 to within the estimated uncertainty of the latter. Furthermore, the density of a sample taken from the viscometer after an experimental run (about 2 weeks) differed negligibly from the density of a fresh sample. This is indicative of the absence of measurable changes in the composition of the solution due to interactions with the internal surfaces of the viscometer.

4. Viscosity

The experimental values of the viscosity of Na_2CO_3 and K_2CO_3 solutions are presented in Tables V–XIII. Each entry in these tables is an average of at least two independent measurements taken at the specified *P*, *T*, *c* point. Checkpoints taken during decompression and cooling are included in the tables. The reported values have been adjusted to nominal temperatures by means of a small linear correction based on an Arrhenius-type interpolation of our experimental results, i.e.

$$\mu \simeq A \exp(B/T) \tag{15}$$

<i>P</i> , MPa	μ, μPa s	P, MPa	μ, μPa s
at 28.0 °C		at 33.5 °C	
0.1	1115	0.1	987
7.5	1117	7.2	990
14.4	1118	14.1	994
21.0	1119	21.0	996
31.1	1123	31.3	1000
0.1	1117	0.3	992
at 38	3.0 °C	at 45	.0 °C
0.7	903	0.3	799
7.2	904	7.4	802
14.2	906	14.4	805
20.9	907	20.9	806
31.3	912	31.1	810
0.4	904	1.4	798
at 51	5 °C	at 71.0 °C	
0.8	709	0.6	528
7.1	711	7.2	529
14.0	714	14.0	532
20.9	716	20.8	532
30.9	718	31.2	536
0.7	709	1.7	526
at 90 °C			
0.8	413		
7.2	414		
13.9	416		
20.6	418		
31.0	422		
2.0	414		

Table VI. Viscosity of Na, CO, Solution No. 2 (c = 0.565 m)

Table VII. Viscosity of Na_2CO_3 Solution No. 3 (c = 0.946 m)

P, MPa	μ, μPa s	<i>P</i> , MPa	μ, μPa s
at 33.5 °C		at 3	8°C
0.6	1213	0.1	1100
7.6	1214	7.2	1103
14.2	1215	14.2	1106
21.1	1218	21.1	1107
31.3	1221	31.2	1103
0.7	1209	0.3	1099
at 4:	5.0 °C	at 53.0 °C	
0.7	964	0.6	834
7.4	967	7.4	838
14.1	968	14.2	840
21.1	971	20.8	846
31.2	975	31.2	849
1.3	964	1.5	835
at 70	0.0 °C	at 89	9.5 °C
0.7	638	1.7	492
7.2	641	7.2	495
14.0	643	14.0	498
21.1	6 46	20.7	501
31.1	650	31.0	504
1.7	637	2.0	494

The estimated uncertainty of the reported results is $\pm 1\%$. Part of this uncertainty is attributed to the inferior quality of the available density data for these solutions relative to those of water and sodium chloride solutions.

5. Correlation of Viscosity

k

Due to the weak dependence of the viscosity of liquids on pressure, it is sufficient to express the pressure dependence by a linear factor. Thus we write

$$\mu(P,T,c) = \mu^{0}(T,c)[1 + \beta(T,c)P/MPa]$$
(16)

The hypothetical zero-pressure viscosity, μ^0 , was correlated in

Table VIII.	Viscosity of Na ₂ CO ₃
Solution No.	4 (c = 1.306 m)

<i>Р</i> , МРа	μ, μPa s	<i>P</i> , MPa	μ, μPa s
at 38.0 °C		at 46.0 °C	
0.1	1331	0.5	1133
7.3	1334	7.2	1135
14.2	1339	14.2	1141
21.2	1343	20.7	1142
31.2	1349	31.2	1151
0.1	1332	0.9	1132
at 55.	0 °C	at 70.5 °C	
0.9	959	1.3	748
7.3	960	7.2	753
14.1	963	14.2	756
21.0	968	20.9	760
31.3	976	31.0	762
1.1	959	1.3	749
at 89.	0 °C		
0.7	580		
7.3	583		
14.2	588		
30.8	596		
1.9	578		
Table IX. Viscosity	of Na ₂ CO ₃		

Solution No. 5 (c = 1.672 m)

P, MPa	μ, μPa s	<i>P</i> , MPa	μ, μPa s	
at 40	at 46.0 °C		2.0 °C	
1.7	1379	1.0	1225	
7.4	1385	7.4	1229	
14.4	1389	14.3	1237	
21.2	1399	21.0	1239	
31.3	1406	31.1	1250	
1.3	1379	1.8	1226	
at 60	0.0 °C	at 73.0 °C		
1.3	1052	1.3	859	
7.4	1058	7.4	863	
14.3	1062	14.2	866	
21.0	1070	21.2	869	
30.9	1079	31.0	877	
		1.8	860	
at 89	9.5 °C			
1.2	682			
14.1	689			
21.0	693			
31.1	698			
0.7	683			

terms of temperature and concentration by means of an expression of the form

$$\mu^{0}(T,c) = \mu^{0}(T,0) \left[1 + \sum_{i=0}^{2} \sum_{j=0}^{2} f_{ij}(T/^{\circ}C)(c/m)^{i+1}\right] \quad (17)$$

in which $\mu^0(T,0)$ is the zero-pressure viscosity of water at *T*. The values of the viscosity of water can be obtained from the accurate correlation of Kestin et al. (*11*), which is based on a critical evaluation of the viscosity of pure water in the temperature range -8 to +150 °C. The coefficients f_i which appear in eq 17 are given in Table XIV for Na₂CO₃ and Table XV for K₂CO₃. Equation 17 reproduces the experimental values to within a standard deviation of 0.3% for Na₂CO₃ and 0.2% for K₂CO₃ with random dispersion as shown by the solid symbols in Figures 4 and 5 for Na₂CO₃ and K₂CO₃, respectively.

The pressure coefficients $\beta(T,c)$ have been correlated by means of the expression

$$\beta(T,c) = \beta_{w}(T) + 10^{-3} \sum_{i=0/i=0}^{3} \sum_{j=0/i=0}^{2} g_{ij}(T/^{\circ}C)(c/m)^{i+1}$$
(18)

Journal of Chemical and Engineering Data, Vol. 25, No. 3, 1980 205

Table X. Viscosity of K_2CO_3 Solution No. 1 (c = 0.495 m)

<i>P</i> , MPa	μ, μPa s	P, MPa	μ, μPa s
at 19	9.0 °C	at 36.0 °C	
0.4	1189	1.0	831
7.1	1186	7.3	831
14.2	1185	14.1	833
21.0	1185	21.1	837
31.2	1186	31.2	838
0.4	1189	1.1	831
at 49	9.0 °C	at 69.0 °C	
1.1	663	1.4	492
7.3	664	7.2	495
14.3	666	13.7	496
21.0	668	21.0	499
31.3	670	31.0	501
1.1	662	1.6	493
at 89	9.0 °C		
0.7	384		
7.0	386		
13.8	388		
20.7	390		
30.7	393		
2.2	384		

Table XI. Viscosity of K_2CO_3 Solution No. 2 (c = 0.982 m)

P, MPa	μ, μPa s	P, MPa	μ, μPa s
at 19	9.5 °C	at 30).0 °C
0.2	1359	0.7	1086
7.1	1362	7.1	1089
14.2	1366	14.1	1089
21.1	1365	21.3	1093
31.1	1368	31.5	1096
0.3	1364	0.2	1089
at 45	5.5 °C	at 60.0 °C	
0.7	821	0.8	656
7.3	822	7.3	659
14.1	825	14.1	659
20.9	828	20.9	662
31.3	830	31.0	666
0.3	820	0.9	657
at 75	5.0 °C	at 89	9.0 °C
0.4	539	0.9	455
7.2	540	7.2	457
14.0	542	13.9	459
20.8	544	20.9	462
30.9	549	31.1	466
0.9	538	0.4	455

Figure 4. Comparison between our viscosity measurements and correlations for Na₂CO₃ solutions: O, solution no. 1, m = 0.280 (\oplus at P = 0); \Box , solution no. 2, m = 0.565 (\blacksquare at P = 0); \bigcirc , solution no. 3, m = 0.946 (\oplus at P = 0); \triangle , solution no. 4, m = 1.306 (\blacktriangle at P = 0); \heartsuit , solution no. 5, m = 1.672 (\heartsuit at P = 0).

Table XII.	Viscosity	of K_2CO_3
Solution N	10.3(c = 1)	.831 m)

P, MPa	μ, μPa s	<i>P</i> , MPa	μ, μPa s
at 30.0 °C		at 45	5.5 °C
0.7	1419	0.8	1068
7.2	1422	7.2	1071
14.3	1425	14.1	1074
21.2	1430	21.0	1078
31.4	1436	31.3	1082
0.6	1421	0.7	1067
at 6	0.0 °C	at 74	.5 °C
1.4	858	1.3	705
7.2	857	7.3	707
14.0	861	14.2	712
21.2	864	21.1	714
31.3	867	31.0	718
1.3	856	1.2	705
at 89	9.0 °C		
1.8	598		
7.2	598		
14.0	604		
20.9	605		
30.9	610		

Table XIII. Viscosity of K_2CO_3 Solution No. 4 (c = 2.448 m)

597

1.3

<i>P</i> , MPa	$\mu, \mu Pa s$	<i>P</i> , MPa	μ, μPa s
at 35.5 °C		at 45	5.5 °C
0.5	1540	0.6	1285
7.3	1545	7.4	1286
14.2	1549	14.1	1291
20.9	1555	20.6	1294
31.2	1561	31.0	1302
0.4	1540	0.8	1285
at 60	0.0 °C	at 75	5.0 °C
0.7	1025	1.3	835
7.3	1028	7.2	842
14.1	1032	14.1	844
21.2	1035	21.0	849
31.3	1043	31.0	857
0.6	1025	1.1	837
at 89.0 °C			
1.6	715		
7.4	718		
14.1	720		
20.9	721		
31.0	722		
1.8	713		

Table XIV. The Coefficients f_{ij} in Equation 17 for Na₂CO₃ Solutions

	j		
i	0	1	2
0	0.5165	0.07321	0.1575
1	0.1013×10^{-2}	-0.5218×10^{-3}	-0.2793×10^{-2}
2	-0.1024×10^{-4}	-0.1025×10^{-5}	0.1736 × 10 ^{-₄}

Table XV. The Coefficients f_{ij} in Equation 17 for K_2CO_3 Solutions

j				
i	0	1	2	
0	0.2124	0.08072	0.01046	
1	0.4697 × 10 ⁻²	-0.2120×10^{-2}	0.6296 × 10⁻⁴	
2	-0.3065 × 10 ⁻⁴	0.1962 × 10 ⁻⁴	-0.1955×10^{-5}	

Figure 5. Comparison between our viscosity measurements and correlations for K_2CO_3 solutions: \Box , solution no. 1, m = 0.495 (\blacksquare at P = 0); O, solution no. 2, m = 0.982 (\blacksquare at P = 0); Δ , solution no. 3, m = 1.831 (\blacktriangle at P = 0); ∇ , solution no. 4, m = 2.448 (\blacktriangledown at P = 0).

Table XVI.	The Coefficients g_{ii} in Equation	18	for
Na ₂ CO ₃ Solu	utions		

	i			
i	0	1	2	
0	4.026	-3.904	-0.1640	
1	-0.2343	0.3310	-0.05880	
2	$0.4760 imes 10^{-2}$	-0.3922×10^{-2}	0.2177×10^{-2}	
3	$-0.3083 imes 10^{-4}$	0.5476×10^{-4}	-0.1756×10^{-4}	

Table XVII. The Coefficients g_{ij} in Equation 18 for K_2CO_3 Solutions

		j	
i	0	1	2
0 1 2 3	$\begin{array}{c} 2.265 \\ -0.08117 \\ 0.1019 \times 10^{-2} \\ -0.4320 \times 10^{-5} \end{array}$	$\begin{array}{c} -2.481 \\ 0.1227 \\ -0.2095 \times 10^{-2} \\ 0.1156 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.011 \\ -0.05550 \\ 0.1006 \times 10^{-2} \\ -0.5786 \times 10^{-5} \end{array}$

in which $\beta_w(T)$ is the pressure coefficient for pure water given in our earlier work (8). The coefficients g_{ij} are listed in Table XVI for Na₂CO₃ and in Table XVII for K₂CO₃.

Figures 4 and 5 depict the deviations of the experimental results from the correlations for Na₂CO₃ and K₂CO₃, respectively.

The correlations represent the experimental results with a maximum deviation of 0.9% for Na₂CO₃ and 0.6% for K₂CO₃. The standard deviations are 0.3 and 0.2\%, respectively, which are well within the estimated accuracy of the experimental data.

Acknowledgment

The authors express their thanks to Mr. R. Paul for maintaining the experimental installation and acknowledge the financial support from the United States Geological Survey (Grant 14-08-0001-G-342).

Literature Cited

- (1) Brown, D. L., Potter, R. W., II, U.S., Department of Interior Geological Survey, Open File Report, No. 77-321, Washington, D.C.
- (2) Correia, R. J., Kestin, J., Khalifa, H. E., Ber. Bunsenges, Phys. Chem., 83, 20 (1979).
- (3) Grimes, C. E., Kestin, J., Khalifa, H. E., J. Chem. Eng. Data, 24, 121 (1979).
- (4) Kell, G. S., Whalley, E., J. Chem. Phys., 62, 3496 (1975).
- (5) Kestin, J., Khalifa, H. E., Appl. Sci. Res., 32, 483 (1976).
- (6) Kestin, J., Khalifa, H. E., Abe, Y., Grimes, C. E., Sooklazlan, H., Wakeham, W. A., *J. Chem. Eng. Data*, **23**, 326 (1978).
- (7) Kestin, J., Khalifa, H. E., Ro, S. T., Wakeham, W. A., J. Chem. Eng. Data, 22, 207 (1977).
- (8) Kestin, J., Khalifa, H. E., Sookiazian, H., Wakeham, W. A., Ber. Bunsenges. Phys. Chem., 82, 180 (1978).
- (9) Kestin, J., Leidenfrost, W., Liu, C. Y., Z. Angew. Math. Phys., 10, 558 (1959). ●
- (10) Kestin, J., Moszynski, J. R., Trans. ASME, 80, 1009 (1958).
- (11) Kestin, J., Sokolov, M., Wakeham, W. A., J. Phys. Chem. Ref. Data, 7 (1978).
- (12) Kestin, J., Wang, H. E., J. Appl. Mech., 79, 197 (1957).
- (13) Potter, R. W., II, Shaw, D. R., Haas, J. L., Jr., U.S., Geol. Surv., Bull., No. 1417 (1975).

Received for review October 31, 1979. Accepted March 7, 1980.

Melting Curve and Pressure–Volume–Temperature Data of Liquid Dimethyl Sulfoxide up to 150 MPa

Alain H. Fuchs,[†] Michel Ghelfenstein,^{*} and Henri Szwarc

Laboratoire de Chimie-Physique des Matériaux Amorphes,[‡] Université Paris-Sud, 91405 Orsay Cedex, France

The melting curve as well as *PVT* data of stable and superpressed liquid dimethyl sulfoxide were measured from 293 to 322 K up to 150 MPa. This study clearly indicates that some previous high-pressure chemistry work on dimethyl sulfoxide solutions must be carefully reconsidered.

Introduction

Dimethyl sulfoxide (Me₂SO) is known to be one of the most polar among the aprotic solvents and to have remarkable chemical reactivity and interesting pharmaceutical properties.^{1,2} Thermodynamic properties at atmospheric pressure were carefully determined,³ but, to our knowledge, no high-pressure thermodynamic data have been published. However, the privileged position occupied by Me₂SO among aprotic organic solvents favored its use in high-pressure chemistry. In particular, kinetic studies were performed by Brower, Ernst, and Chen⁴ in order to determine activation volumes for several alkylation reactions of ambident anions in Me₂SO. They carried out measurements in different systems at five temperatures (20, 27, 30, 36, and 47 °C) and at two pressures (1 and 1360 atm) for each temperature.

Their general conclusion was that pressure had no effect on the proportions of isomeric products. But they supposed implicitly that the chemical medium remained liquid and homogeneous

[†] A.H.F. thanks the DRET for a research grant.

^{*}Part of the Laboratoire de Physicochimie des Rayonnements (Associé au CNRS).